Gandhinagar University - Special Edition ICDSIA-2023 (Fifteenth Volume-I, 2023)

Deep Variational Autoencoders and Muti-Omics Integration for Pancreatic
Cancer Subtyping

Aadil Rashid Bhat?*, Rana Hashmy?

aDepartment of Computer Sciences, University of Kashmir,190006, India

Abstract

in both men and women, which claimed close to half a million deaths in 2020. Characterized by late diagnosis, poor
survival rates, and high incidence of metastasis, Pancreatic cancer is predicted to become the second leading cause of
cancer-related deaths by 2030. However, there has been little advancement in terms of early detection and effective
treatments for Pancreatic Cancer, leading to a dismal 5-year survival rate of 3-15%. Which renders the unmet challenge
of early diagnosis of PC both urgent and important. Recently, multi-omics analysis of numerous cancers has provided a
new perspective on genomics, epigenomics, and transcriptomics deregulations in cancer. Which helped with fine-tuned
characterization, classification, and early diagnosis of Cancers. However, due to the vast number of heterogeneous
variables in each omics data, and its disparate and dynamic nature multi-omics data possess many challenges in data
integration and knowledge discovery. In this study, we used Deep learning to find a latent representation of integrated
multi-omics data together with many clustering methods to find homogeneous pancreatic cancer subtypes. Which can
explain differences in disease trajectories and outcomes in heterogeneous cohorts. And help improve early diagnosis,
treatment, and prognosis of pancreatic cancer.
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1. Introduction

Pancreatic cancer is a highly lethal form of cancer, ranking as the seventh most common cause of cancer-related fatalities
worldwide. [1]. Pancreatic ductal adenocarcinoma (PDAC) has a very high mortality rate and its incidence is increasing, it has the
lowest 5-year survival rates, i.e., Only 9% of people with PDAC are able to survive for five years after diagnosis. Pancreatic
cancer was accountable for nearly 500,000 deaths globally in 2020, as reported by GLOBOCAN 2020. PDAC is highly
heterogeneous, leading to differences in oncogenesis and varying survival rates among patients. Consequently, this heterogeneity
poses significant clinical challenges, including inaccurate diagnoses and inadequate treatment approaches. [2]. Contemporary
medical and molecular diagnostic techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), and
endoscopic ultrasound (EUS) accompanied by fine-needle aspiration (FNA), are currently available. However, these techniques
offer limited information regarding tumor aggressiveness and the probable disease prognosis, posing a significant challenge to
the development of an accurate treatment regimen[3]. As a result, the prognosis post-surgery remains, in most cases, uncertain[4]
(Guillén-Ponce et al., 2017). A case in point, is the CA 19-9, as discussed in this study. Which is a widely used cancer marker for
monitoring treatment Responses [5]. And This informs the treatment strategy, however, this biomarker has demonstrated high
false positive and high false negative results[4].

1.1 Multi-Omics

The advancement in high-throughput technologies[6], and explosive growth in biological data collection, e.g., Several thousand
biological samples have been profiled and made publicly available by The Cancer Genome Atlas (TCGA) and The International
Cancer Genome Consortium (ICGC) have allowed researchers to understand the molecular bases of the genetic disorders,
facilitating effective and personalized diagnosis and treatments in case of many cancers, including PC[7][8][9][10]. However,
cancer research that concentrates on only one aspect of biological data (single-omics) has only furnished limited insights into the
causes of cancer development and the advancement of tumors[11]. These single omics studies have often resulted in different and
at times conflicting patient classifications[12]. And as such many multi-omics studies of various cancers have facilitated a deeper
understanding of genomics, epigenomics, and transcriptomics deregulations in malignancies[13]. One such method is the use of
the machine learning model called Autoencoders, which is an Artificial Intelligence method of relearning the latent space or
manifold of the high-dimensional space to extract meaningful information from large data bodies. The omics data are
charlatanically very complex in their dimensions and hence application of AE In such situations has been extensively studied.
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1.2 Dimensionality Reduction and Machine Learning

Dimensionality reduction is a widely adopted technique in data science and machine learning that involves the process of
converting information from a space with a large number of dimensions into a smaller subspace with fewer dimensions. The
primary objective of this technique is to preserve the crucial attributes of the original data while reducing its complexity and
computational requirements One way to accomplish this is by mapping the important features of the data onto a subspace with
fewer dimensions that captures the essential characteristics of the original data that are relevant to a given use case or
analysis.[14]. Dimension reduction techniques have been used for classification, visualization, and data compression in many
fields including bioinformatics[15]. Well-known techniques for data analysis such as Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and Multi-Dimensional Scaling (MDS)[14] have been extensively studied. However, these
methods suffer from different shortcomings like the inability to capture global structures[16], information loss, and processing of
large-scale datasets[17]. Apart from DM methods, many methods have been devised for the integration of multi-omics data these
methods attempt to find the complementary signals from different omics functional levels to better understand the molecular
characterization of underlying conditions like cancer. This combined analysis has the potential to reveal novel biomarkers for
better characterization and homogenous classification of the cancer types and subtypes and an assistant in personalized care and
better treatment plans. multi-omics for cancer patient stratification has also been widely studied. For example, The intNMF[18],
which is a non-negative matrix factorization method, which does not assume any distributional form of data, The LRACluster[19]
a probabilistic integrative mode based on low-rank approximation, which assumes and estimates the principal latent subspace for
the entire data, The Mixkernal[20], which computes similarity matrices from kernels which are then combined to obtain a
combined Similarity matrix. The SNF, which is a popular similarity network fusion method that uses graphs to model patient-
patient similarity using multi-omics data, and the RCGAA[21] a generalized canonical correlation analysis framework that allows
for choosing various parameters like scheme functions and shrinkage constants. Even though unsupervised subtyping revealed the
molecular diversity among PDAC patients, the survival outcomes varied widely within each subtype. As a result, there is no
significant difference in prognosis among the subtypes identified using these methods [22]. More recently Artificial intelligence-
based methods which have shown remarkable performance in other data extensive fields have been applied to the problem of
dimensionality reduction and data integration. In this study, we used Deep hierarchical Variational Autoencoders (DVAE) for
dimensionality reduction and multi-omics integration to learn homogenous subtypes of pancreatic cancer.

2. Description of model for PC classification
2.1 Proposed model.

Our proposed model is a multi-level deep Variational Autoencoder (VAE) based integration and dimensionality reduction
framework. The standard VAE[23] is a probabilistic deep learning method that is used to extract the low-dimensional data
manifold from high-dimensional datasets. Instead of representing each input x; as a singular value, the VAE encodes it as a
distribution characterized by its mean and standard deviation across a latent space. VAEs are typically composed of two networks
an input network that encodes the data, and a decoder counterpart that aims to reproduce the original input data from the low-
dimensional embeddings, see Fig 1.

The VAE approximates the latent distribution by minimizing the kI divergence score, as in Eq. (1).

D1 (94 (2) Il po(2)) (1
Where qg(2), called a variational distribution, is the estimation of the true but intractable posterior pg(z). Recently, Maximum

Mean Discrepancy (MMD)[24] function in comparison to KL divergence was shown to produce better results for approximating
the true posterior. MMD, which is given by Eq. (2),

MMD(p(Z)llq(Z)) = ]E(p(z),p(z’)[k(zﬂzl)] + ]E(q(z)’q(zl)[k(Z,Z’)] - ZIE(p(z),q(z')[k(Z'Z,)] (2)

states that two distributions can only be considered identical if their moments are equal. Therefore, we can measure divergence by
comparing the moments of two distributions p(z) and q(z). By using kernel embedding, MMD can efficiently accomplish this
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Fig. 1. The Architecture of Deep Hierarchical Variational Autoencoder for PAAD. A separate VAE is built for (A) mRNA (B)
microRNA (C) Methylation. The individual omics embeddings are then combined (E) to train the combined VAE model (E).

In this study, we trained three different MMD-based VAEs for each omics data and the outputs of which were fed to another VAE
to generate the final embeddings which capture the latent manifold of the entire data and are subsequently employed for finding
homogenous subtypes of the PC.

1.3 Datasets

In the present investigation, we employed a comprehensive approach for pancreatic cancer (PC) subtyping utilizing four distinct
omics data sets. Specifically, we retrieved data about mRNA expression, microRNA expression, DNA methylation array, as well
as clinical parameters of a cohort of 150 patients who underwent surgical removal of their primary pancreatic ductal
adenocarcinoma (PDAC from The Cancer Genome Atlas (TCGA) Pancreatic Adenocarcinoma (PAAD) database [7].

Training Dataset: We obtained transcriptome-wide information on 177 patients by downloading data from The Cancer Genome
Atlas (TCGA) Pancreatic Adenocarcinoma (PAAD) cohort using the R package TCGA-Assembler[25]. The information set
consisted of three types of biological data: mRNA sequencing (mMRNA-Seq), microRNA sequencing (microRNA), and DNA
methylation array data. The Illumina HiSeq platform was utilized to generate both mRNA-Seq and microRNA data, while the
[lumina Infinium HumanMethylation450 BeadChip platform was used to obtain the DNA methylation data. The mRNA-Seq
data, as per TCGA, was processed and normalized by Expectation Maximization (RSEM) [26]. Likewise, the RPM normalization
method was applied to the microRNA-Seq data. Only patient samples that had complete data for all three types of multi-omics
and clinical information (146 samples) were kept. Any genes that had missing data greater than 20% for DNA methylation, as
well as any genes from mRNA and microRNAs that had zero values greater than 20% among the retained samples, were
excluded. [27][20] DNA methylation genes exhibiting a proportion of missing values less than or equal to 20% were subjected to
imputation using the R package impute. Subsequently, to standardize the values of the mRNA and microRNA datasets, a log
transformation was utilized. This data preprocessing strategy was implemented to reduce the impact of missing data on
downstream analyses, as well as to facilitate meaningful comparisons between gene expression profiles across multiple samples.

Test Datasets: To corroborate our findings and evaluate the classification efficacy of our model, we procured two external
datasets from the Gene Expression Omnibus (GEO), with the accession numbers GSE62498 and GSE62452, respectively.[28].
The GEO GSE62452 mRNA microarray dataset was procured from the Affymetrix GeneChip platform and was subjected to the
robust multi-array average (RMA) normalization technique. Subsequently, the data generators obtained the average expression
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values of each gene from the multiple corresponding probe sets. The expression values were then subjected to a logarithmic
transformation. The GEO GSE62498 microRNA dataset, on the other hand, was obtained from the Nanostring nCounter Platform.
The dataset underwent normalization through the geometric mean, followed by a logarithmic transformation using the formula
log,(x + 1).

2.2 Model Training

Four omics pre-processed TCGA PC data for a total of 146 patients were used as input to the Autoencoders. The DVAE
architecture was constructed utilizing the Keras library in the Python programming language. The design consists of a symmetric
encoder and decoder neural network architecture with two hidden layers and a maximum mean discrepancy (MMD) loss function.
ReLU, a commonly used nonlinear function, was employed as the activation function in each layer except for the output layer,
which employed the sigmoid function for each layer the output y, given the input x, is calculated as in Eq. (3).

y; = relu(Wx + b;) = f;(x) 3)

So, the output %, is given by Eq. (4).

2 = sigmoid (fs(f,(f(x)) + b) = F(x) )

After the model reduced the number of features to 500, a univariate Cox-PH model was generated on each feature, and the top
features associated with survival (P-values * 0.05) were identified using the R survival package. K-means was next used to cluster
the data into two different survival subgroups.

3. Results

Subsequently, we retrieved the omics characteristics with the most unique expression patterns between the two subtypes (i.e.,
high-risk or low-risk) that had been previously identified. The ANOVA-F test was applied to assess the features that were
significantly related to each subgroup, and the selection of features was based on the average precision obtained from 5-fold
cross-validation on the training set. These features were then utilized to train a random-forest classifier. Furthermore, the
effectiveness of our approach was confirmed by evaluating two external datasets. The Kaplan—Meier plot of the training dataset
and the two external datasets are presented below in Fig 2
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Fig. 2. The Kaplan-Meier survival plots of the subgroups for the (A) TCGA-PAAD cohort and two external datasets (B)
GSE62498 with 46 patients and p-value of 0.0055 (C) GSE62452 with 65 patients and p-value of 0.0015.

3.1 Comparison with other methods

We then compared the performance of our model against 6 other integration methods based on different statistical frameworks
like Matrix factorization, consensus clustering and co-inertia analysis, and similarity matrix.
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we assessed the effectiveness of integration and dimensionality reduction algorithms using the log-rank p-value and concordance
index as the evaluation metrics. see the comparison table and plots in Fig 3. Our proposed model demonstrated superior
performance to other existing multi-omics models, as evidenced by a log-rank p-value of 5e-08 and a c-index of 0.6505, as
depicted in Fig 3. These findings suggest that our model has the ability to extract meaningful subspace manifold and possesses
discriminative power to accurately classify new, unseen single omics datasets into the identified subtypes.
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Fig. 3. The performance comparison of our model against six other related methods (a) table summarizing the findings, and the
bar plots of the (b) log-Rank P-values and (c) concordance index.

4. Discussion and Conclusion

Over the past few years, there has been significant research dedicated to the detection of molecular and biomarker features of
cancers, which includes pancreatic cancer (PC). A study conducted in 2012 on 1027 cases of PC and 1031 controls of Han
Chinese patients identified a noteworthy correlation between the incidence of pancreatic cancer and the copy number of
CNVR2966.1 located at 6q13.[29]. Another study in 2015 established a link between amplification in the MYC gene and shorter
patient survival duration.[30] Multi-omics studies have been employed to improve diagnostic tools, such as Comp Cyst, which is
a machine learning-based test used to manage patients with Pancreatic cystic lesions (PCLs) and is estimated to help avoid 60% of
unnecessary surgeries.[31] . Multi-omics has also been used to study cancer patient stratification. For example, the iCluster
method utilized gene expression and copy number variation information to identify different subtypes of breast and lung cancer.
This approach demonstrated that utilizing multiple sources of information (multi-omics) results in more informative subtypes
compared to using only one source (single omics). The Similarity Networks Fusion (SNF) technique was also applied to identify
molecular subtypes of pancreatic cancer using a combination of proteins, mRNAs, DNA methylation, and microRNA profiles[8].
Although unsupervised subtyping helped using non-Al methods to identify molecular diversity in PDAC patients, the patients in
each subtype still exhibited a wide range of survival outcomes, and the disparities among subtypes were not statistically
significant.[22].
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In this study, we used the ability of the Deep Variational Autoencoder to extract the latent clustering patterns within the
Pancreatic Cancers patients to identify and characterize the two prognosis subtypes. These features were then used to train a
machine learning classification model to classify the unseen Pancreatic cancer datasets into the identified subtypes.
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